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ABSTRACT

This report summarizes recent activities on the development of a formal model of the design
and evolution of software. The model is intended to be both descriptive and prescriptive.
It is descriptive in that we are attempting to capture krown design processes in the model.
The model is also intended to be prescriptive in the sense that it provides the conceptual
basis for the sophisticated knowledge-based software design environments of the future. It
should have the flezibility to support a variety of design methodologies, be comprehensive
enough to encompass the gamut of software lifecycle activities, and be precise enough to
provide the conceptual foundations for an open yet rigorous development environment.

We also present recent work on the structure and design of a class of algorithms called global
search. The design tactic for global search algorithms provides a rich example of the kind
of design process that the abstract model is intended to capture. We present a tactic for
designing global search algorithms and illustrate it with the derivation of an algorithm for
enumerating cyclic difference sets - a rare kind of set that bear some similarities to the prime
numbers. The design tactic has been implemented and used to derivation dozens of global
search algorithms including one for enumerating cyclic difference sets.
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1 Introduction

This report summarizes recent activities on the development of a formal model of the design
and evolution of software. The model is intended to be both descriptive and prescriptive.
It is descriptive in that we are attempting to capture known design processes in the model.
Examples of design processes include algorithm design tactics and optimization techniques
developed at Kestrel Institute (see for example {28], system builds, version control methods,
JSD (Jackson System Design) methodology [14], and Boehm’s Spiral model [7]. The model
is also intended to be prescriptive in the sense that it provides the conceptual basis for the
sophisticated knowledge-based software design environments of the future. It should have
the flezibility to support a variety of design methodologies, be comprehensive enough to
encompass the gamut of software lifecycle activities, and be precise enough to provide the
conceptual foundations for an open yet rigorous development environment.

There are several criteria or constraints that we feel are essential characteristics of the next
generation of software development tools. We are working to ensure that these are integral
to the model.

Formal Design - to allow machine-mediation and support for the design process in-
cluded the capture and reuse of design decisions

Consistency - machine-generated changes must preserve consistency or at least some
specified semantics

Scalability - the model should apply equally to module-level design as to system-level
design.

Evolution - the model should accomodate change as an integral part of design

In Section 2 we lay out our current ideas on the nature of design and evolutionary software
activities. First a conceptual model of a design state is presented and then we step back
and view system evolution as a sequence of design states starting from a simple initial state.
In Section 3 we present recent work on one particular design process. We have studied in
some depth the structure and design of a class of algorithms called global search [27). The
design tactic for global search algorithms provides a rich example of the kinds of design
process that the abstract model is intended to capture. In turn, the model clarifies the
nature of the activities involved in algorithm design. We present a tactic for designing global
search algorithms and illustrate it with the derivation of an algorithm for enumerating cyclic
difference sets - a rare kind of set that bears some similarities to the prime numbers. The
design tactic has been implemented and used to derive dozens of global search algorithms
including the cyclic difference sets algorithm. In Section 4 we present an example of an
evolution step which reflects a simple but formal elaboration of a hospital patien. monitoring
system.
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Figure 1: Design Structure

2 Toward a Formal Model of Software Design and
Evolution

2.1 Design Structures

The simplified diagram in Figure 1 presents the components and relationships of our initial
model of software design. We will refer to this structure as a design structure. The domain
model is a formal representation of relevant aspects of the world within which the desired
software is to be embedded. The specification component expresses constraints on the be-
havior of the desired software artifact. The derivation structure component is a record of
the design decisions that connect the specifications to target code. Our model of design is a
transformational one - the specifications are incrementally transformed in a stepwise refine-
ment process into executable code that is provably consistent with the initial specifications.
The final component, code, is a program specification expressed in some target language.




The key constraint on a design structure is mathematical consistency between ihe compo-
nents. That is, the specification is stated in terms of the underlying model and is consistent
with its constraints. The derivation structure provides in essence a proof that the code is
consistent with the specifications - it is a proof by construction. The only assumptions used
in deriving the code are those that are available in the model or in the specification itself.

For simplicity of exposition we assume a single “wide-spectrum” language for all expressions
of the design structure. This in fact is the situation with our experimental system, KIDS,
which is based on the REFINE language and programming environment. REFINE provides
set-theoretic daia types, full first-order logic constructs, object structuring mechanisms, and
PASCAL-level control and data structures. Casting this assumption aside would require
that our model be elaborated to include transformations between linguistic systems, as in

[29].

In the following subsections we elaborat:: this model. In Sections 3 and 4 we present detailed
examples and explain their correspondance with the model.

2.1.1 Theories

How can we formally define the notions of domain model, specification, and derivation? The
remaining component, code, has by now a fairly consensual definition: programs are well-
formed terms over a programming language and the programming language itself can often
be expressed as a theory; that is, in terms of a collection of sorts, operators, and axioms.
Could the notions of algebra and logic suffice for the other components?

We list here a few definitions of concepts from algebra [16, 10] and mathematical logic [20]
that are central to our model of software design. The syntactic part of a theory T, called its
signature, is presented by giving a collection of sort symbols (denoting types) and a collection
of operator symbols and their arity (e.g. f: D — R). The language of T, denoted L(T),
is just the well-formed terms over the signature of T. The semantic part of a theory is
presented by giving a list Az(T) of azioms. A formula F € L(T) is a theorem of T if it is
derivable from the axioms using the rules of predicate calculus.

A modelof a theory is an assignment of sets to the sort symbols and functions to the operator
symbols such that the arities are consistent with the sorts and the axioms are satisfied. A
theory T is consistent if the boolean constant false is not a theorem of T. A theory is
consistent if and only if it has a model.

Theory T’ is an eztension of theory T if L(T) C L(T’) and every theorem of T is also a
theorem of T'. Theory T" is a conservative extension of theory T if L(T) C L(T’) and every
formula of T which is a theorem of T” is also a theorem of T. Conservative extensions are
often constructed by adding a new function symbol and defining axiom to a theory. Such a
construction is called a derived operator.

A theory morphism between theories T and T consists of (1) a map from the sorts of T to
the sorts of T, and (2) a map from operator symbols of T to derived operations in T" such
that each axiom of T is mapped to a theorem of T’ when each operator symbol is replaced
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by its derived operator in T’. Also the operator map must be consistent with the sort map.
Intuitively, a theory morphism allows us to translate the concepts and behaviors of theory T
into the terms of T". In particular this concept expresses the essential notion of implementing
a abstract theory T in terms of a concrete theory T”, where the terms abstract and concrete
are relative.

2.1.2 Domain Model

If we want to specify and build a software system, then we need vocabulary and some
expression of its semantics. In this paper we will presume a formal representation of an
underlying linguistic system (such as REFINE), but will require further information about
the application domain of the software system.

Domain models express the objects, operations, relationships, agents, activities, and other
assumptions and properties about the application domain. It is important to explicitly
represent this information because (i) it provides the vocabulary in which the requirements
of the desired system are expressed, and (ii) many difficulties arise in current practice due
to differing assumptions made during design.

Domain models can be classified into two kinds: static and dynamic [14]. Static models are
used in application domains that are essentially timeless. A database provides one example
of a static model. It expresses the objects and relationships of a finite world. Static models
are most generally expressed as theories in classical logic. Dynamic modelson the other hand
are used when the objects and relationships can change over time. They can be expressed by
theories in temporal/modal logics or process models such as state transition diagrams [13).

In this paper we limit our attention to static domain models presented as theories.

2.1.3 Specifications

Specifications describe the intended behavior of a software system. They are expressed in
terms of the vocabulary provided by the domain model. Specifications consist of formal
interface descriptions (services provided and required input) plus constraints on allowable
behavior of the desired software and the use of the system in context. Constraints can be
placed on the functionality, syntactic form, performance, reliability, fault-tolerance, etc. of
the target system.

We can factor the notion of a specification into functional, structural, performance, and
environmental constraints:

e Functionality deals with the logical relations between inputs and outputs (the interface
with the rest of the software system’s environment). Ideally the functional description is
devoid of any structural constraints (implementation details). Functionality constraints
describe what the system is intended to do.




e Structural constraints deal with the form of the software system, that ie, how the system
achieves its functional behavior. Structural constraints may describe the modules and
abstract interfaces of a system, specify the use of routines from a standard library
(rather than synthesizing similar code), specify the use of a certain communication
protocol, etc. A LISP or ADA program can be thought of as a purely structural
specification of a system.

o Performance deals with the resource utilization of a concrete program. Typical perfor-
mance issues are program termination (finite consumption of resources), the amount of
running time and/or memory space consumed, number of processors used, communi-
cation costs, etc. A specification might state that the target program should optimize
a given cost function involving various aspects of performance.

o Environmental constraints describe the context in which the system will be used. As-
sumptions might describe the sizes of typical inputs, a probability measure on inputs,
the relative frequency of calls on the system’s utilities, number of processors available
and their characteristics, etc. This information is essential in assessing whether the
target code achieves its performance constraints. Environmental constraints import
information from the domain model into the specification.

For the purposes of thiz paper we will restrict attention to specifications of the interface:
functionality constraints. Specifications will be presented as conservative extensions to the
domain model.

2.1.4 Derivation Structures

Derivation structures record the design decisions that connect specifications to code. Our
model of design is transformational - the specifications are refined incrementally via the
application of transformation rules into executable code that is provably consistent with the
initial specifications. The derivation structure can be used for documenting and explaining
the design and for helping to guide the design process.

The basic step in a derivation is an implementation step which can formalized in terms of
theory extension and theory morphism. Given a specification presented as a theory S0, an
implementation of theory SO0 in theory S1 is a pair (M, E) where E is a conservative extension
of S1 to 51’ and M is a theory morphism from theory SO to theory S1’. See Figure 2. The
intuition is that our “abstract” specification/theory S0 is to be implemented in terms of a
“concrete” specification/theory S1. The theory S1 provides the basic vocabulary for the
implementation step but we must extend it with appropriate operations and definitions so
that the operations and definitions in SO can be translated in a way that preserves the
behavior of S0.

The definitions of theory morphism and conservative extension guarantee that S1’ is consis-
tent with the abstract behavior/properties in SO0.
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Figure 2: Implementation Step

As an example, consider the step of applying a transformation rule (conditional rewrite rule)

r—s ifP

This rule applies to specification F{t] if r matches the subterm ¢ with substitution 8 and
condition P8 can be verified. We conservatively extend the current specification theory by
adding a new function F'[s]0 and replace every occurence of F by the new function. There
is a natural morphism from the original specification into this new extended specification.
As an option we could delete the unused function F and rename F' to F.

The usual model of derivation is a simple sequence of implementation steps. Implementation
steps can be composed to form derivation structures. See Figure 3. However, our algorithm
design tactics reveal an unexpected twist. As discussed in Section 3, we represent the ab-
stract structure of a class of algorithms A as a *heory, called say A-theory. The essence of
designing an algorithm of a given class A is to extend the current specification theory S
with the structure common to the class such that the extended theory $’ is the image of a
theory morphism from A-theory. Once an A-theory is created, then a concrete algorithm
for the problem can be constructed. This construction is mediated by one of a collection
of A-theorems that factor in commitments to target language, control strategy, and target
architecture. The resulting algorithm is a derived operator that extends the problem spec-
ification. This approach to algorithm design gives the derivation structure in Figure 4. So
while this design step can still be viewed formally as an implementation step, it is the target
specification that is given and extended in this case rather than the source. We might dis-
tinguish these two cases of implementation calling the first a refinementstep and the second
a design step.

One goal of this project is to develop a theory (abstract data type) of derivations and to
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Figure 4: A Design Step
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validate its generality by applying it to a diversity of known implementation steps and design
processes. A derivation ADT will have mechanisms for sequential and parallel composition,
alternation, and iteration [30, 21]. For our purposes, mechanisms for abstraction and instan-
tiation of derivation structure will be vital to capturing general design processes such as our
algorithm design tactics. The idea is that ground derivations can express design histories - a
trace of the decisions made (by man or machine) during a derivation, and that parameterized
derivations express design tactics - reusable methods for deriving code from specifications.
An ADT for derivations would have many of the characteristics of a metalanguage, such as
ML [12], since a derivation can be viewed as a metaprogram applied to a specification to
derive code.

Several other requirements on a theory of derivations that seem important from our case
studies are discussed below.

Design Goals

Goals are formal descriptions of a result to be achieved. The top-level goal in a development
system 1night specify a derivation structure that maps a given specification into a consistent
source-level program specification. Other kinds of goals include obtaining certain kinds of
analyses, propagating a constraint, obtaining certain kinds of inferences, gathering properties
about a certain subproblem, optimizing a section of code, refining away certain kinds of
constructs, etc. Goals provide the rationale for an implementation step and supporting
activities. In a top-down stepwise refinement design process, the design goals also serve to
focus the process and motivate the selection and application of implementation steps.

Implementation Methods

Methods are operators that perform an implementation step in order to achieve a certain
kind of design goal. Methods, like all other software, have specifications of their behavior.
Determining applicability of a method to a goal amounts to verifying that the method’s
functionality constraints will achieve or make progress towards the current goal. A method
achieves a goal, either directly or by reducing it to a structure of subgoals. Direct methods
may encapsulate a single transformation rule or invoke a system utility such as the compiler,
analysis routine, or inference system. Cther methods may spawn a complex structure of
subgoals and perform arbitrary processing in combining the results of achieving the subgoals.
A key question of this research is how to stmicture and compose methods. Analysis of our
existing transformational systems suggests the need for such control structures as abstraction,
alternation, sequencing, loops, and exception haudling.

Goal Satisfaction and Exceptior.-handling

An important issue is how to verify that a completed method has indeed satisfied the goal for
which it was invoked. In general goal satisfaction is expressed 2« a theorem-proving problem,
but we expect that a more efficient approach can be found. We need to be able to deal with
methods that only partially satisfy the goal. In such cases, the system would need to analyze
the reasons for failure and use them to suggest further action. In [24, 26] we explore the use
of contingency rules for dealing with partial successes in design tactics. These rules prescribe
how to fix the situation, generally by modifying the program specification to facilitate the
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development process. Thus the ability to detect partially solved goals seems crucial to getting
a feedback relation between the design process and specification formulation process.

Content of Implementation Steps

Various kinds of implementation steps have been explored in the literature. The desired ADT
should express the abstract form of derivations but also be expressive enough to capture the
content of known implementation methods. We cite just a few examples of the kinds of
implementation methods that our ADT should express naturally. Refinement of abstract
data types has been studied extensively, e.g. [10]. Derivation methodologies such as {15, 6]
rely on user-supplied implementation steps and require post-hoc verification of consistency.
The abstract notion of implementation seems well-suited to support this approach. Another
kind of implementation step is implied by the transformational methodology (3, 8, 2, 1}.
Here there is a library of generic implementation steps (called transformation rules) and a
derivation is usually treated as a sequence of rule applications. Our automated methods for
designing algorithms such as divide-and-conquer [24] are yet another kind of example.

Specifying Derivation Structures

We can view the design process as a computation whose output is a derivation structure.
This suggests that the design process itself can be specified and designed. That is, in general
we may want to specify the design process in terms of constraints on the form, function,
resource utilization, and usage of the resulting derivation structure. A typical functional
constraint would be to produce a derivation structure for a program that satisfies a given
problem specification. Structural constraints limit the form of the derivation, for example by
using a certain derivation structure for guidance (i.e. replay). The performance constraints
define the resources that can be used by the design process. Finally we might specify that
the derivation structure is to be used for documentation and replay - perhaps resulting in
two structures tailored to these specific uses.

2.1.5 Consistency

A key property of a design structure is its consistency. That is, treating the structure as a
theory of the desired software system, it is not possible to infer a contradiction.

Inconsistency can arise ip many ways. In terms of design structure we can categorize some
of these. The domain ni-.2i can be internally inconsistent, so tools are needed for making
inferences from the 1 - ' seeking contradications. Some simple necessary conditions on
consistency can be tesied: well-formedness of terms and formulas, and definedness of terms.
The specification may be . . asistent with the domain model, but this possibility suggests
that we identify and -uppoct ways to conservatively extend a domain model. A conservative
extension to a consistent theory is also consistent. The way that we have defined imple-
mentation steps in terms of theory extension and interpretation between theories enforces
consistency at each stage. Whatever composition mechanisms are developed for a derivation
ADT must be proved to be consistency-preserving. Also any methods that are introduced to

12




the system must be shown to be consistency-preserving. This is clearly the hardest problem,
since tools are generally lacking for this task.

2.2 Evolution Structures

Software typically evolves over time — programmers must continually adapt it to meet chang-
_ ing needs and changing environments. Thus a successful model of design must accomodate
change and evolution as an integral part of the design process.

The notion of a design structure in Figure 1 provides the framework for organizing our
thinking about the evolutionary process. Initially the designer creates a simple, but con-
sistent design. Then the designer iteratively begins transforming the design structure until
a satisfactory design state is reached. These transformations are accomplished by making
small but meaningful changes to either the domain model (to improve its accuracy and
precision), to the specifications (to more accurately reflect the desired behavior), or to the
derivation structure (to make better implementation choices). These changes are then prop-
agated throughout the design structure according to propagation rules in order to reestablish
a consistent design structure. So, for example, if we add an exceptional case to the domain
model, the design system should propagate the exception into the specifications and finally
through the derivation structure to be reflected in the target code. Note the shift away from
the current notion of “replay” of a derivation structure on a modified specification (a kind
of design-by-analogy) to the more deductive notion of propagating changes through a struc-
ture and reestablishing consistency. In a satisfactory design state the model is sufficiently
accurate, the specifications have been elaborated to the point that they reflect accurately
the needs of the users of the target software, and the derivation produces correct code with
acceptable performance characteristics.

The key idea is that it is easier to understand, explain, build, and modify a complex object
like a design structure in increments rather than all at once.

There are various ways to build a simple initial design structure. The domain model may
include simplifying assumptions such as infinite memory or infinite precision arithmetic, or
unbounded rationality in agents. Several data types may be confounded. The specification
too may be oversimplified - perhaps dealing only with normal-case behavior and a very
restricted subset of the desired functionality. The derivation structure may reflect a simple
implementation strategy that yields correct executable code, but without much efficiency.
Or it could implemect the specification on a nonexistant very-high-level architecture. The
derivation structure for a simple design state nonetheless records a derivation of code that
is consistent with the model and specifications.

This model of evolution is based on the pioneering work of Goldman [11] and Feather [9] who
are concerned with the evolution of specifications prior to implementation. Our approach
applies the incremental elaboration idea to the entire design process and puts it on a rigorous
basis.

There are several notable features of this model of design.

13
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1. It is formal and mathematically rigorous. It is intended to only allow the production
of provably correct code - at the expense of a more formal design process. Consistency
is maintained at all stages of evolution.

2. Our intent is that design be entirely machine-mediated, with an increasing amount
of the decision-making being automatable. Reestablishment of consistency is key to
evolution and it motivates much of the machine’s decision-making.

3. Design is an incremental process. Evolution and prototyping are accomodated as the
basic modes of operation.

4. The model of evolution is well-structured and provides a conceptual framework for
organizing software evolution activities and support systems. We can begin to cat-
alog the kinds of changes that are typically done during evolution and the rules for
propagating their effects over the components of the design structure.

5. The model is intended to apply to both system- and module-level software design.

3 Design of Global Search Algorithms

In this section we present a detailed example of a generic desién method and indicate corre-
spondance with the model of design outlined in Section 2.

Solving a problem by intelligent enumeration of the space of candidate solutions is a perva-
sive and well-known paradigm in the computer science and operations research communities.
We explore one common enumeration method called global search, which applies, at least
theoretically, to any partial recursive function. Global search generalizes the computational
paradigms of binary search, backtracking, branch-and-bound, constraint satisfaction, heuris-
tic search, and others.

The basic idea of global search is to represent and manipulate sets of candidate solutions.
The principal operations are to eztract candidate solutions from a set and to split a set into
subsets. Derived operations include various filters which are used to eliminate sets containing
no feasible or optimal solutions. Global search algorithms work as follows: starting from an
initial set that contains all solutions to the given problem instance, the algorithm repeatedly
extracts candidates, splits sets, and eliminates sets via filters until no sets remain to be split.
The process is often described as a tree (or DAG) search in which a node represents a set of
candidates and an arc represents the split relationship between set and subset. The filters
serve to prune off branches of the tree that cannot lead to solutions. In our model of global
search, solutions can be extracted from all nodes of the tree, not just leaves. This allows the
enumeration of infinite feasible spaces where the tree is unbounded in breadth or depth.

The sets of candidate solutions are often infinite and even when finite they are rarely rep-
resented extensionally. Thus global search algorithms are based on an abstract data type
of intensional representations called descriptors. In addition to the extraction and splitting
operations mentioned above, the type also includes a satisfaction predicate that determines
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when a candidate solution is in the set denoted by a descripter. For the sake of simplifying
the presentation we will use the term space (or subspace) to denote both the descriptor and
the set that it denotes. It should be clear from context which meaning is intended.

The core of this section is an axiomatic representation of the abstract structure of global
search algorithms. The axiomatic representation allows us to capture the essence of a class
of algorithms while suppressing details of programming language, programming style, and
control strategy. The main results of this section are design tactics for formally deriving
global search algorithms from specifications. Being based on the axiomatic representation,
the tactics are sound and thus they either produce correct algorithms or they fail to complete.
The tactics are abstract and thus they are applicable across a broad variety of problems.
They are also formal and thus are amenable to machine support. The tactics incorporate
control knowledge about designing global search algorithms and thus provide kighly motivated
derivations when compared with the use of a more general but consequently weaker derivation
methodology.

Our overall approach to automating algorithm design is based on formalizing classes of
algorithms as abstract axiomatic theories (c.f. [17, 24]). A given problem specification is
treated as a concrete theory that is a conservative extension of the underlying domain theory.
Algorithm design is a process of extending the concrete problem theory with an appropriate
instance of an abstract algorithmic theory. The extended theory then allows the inference of
concrete programs in a variety of languages and styles (recursive vs. iterative, sequential vs.
parallel, etc.). Part of the power of this approach is that much of this design process can be
specified in the abstract and coded into a tactic that then applies across a broad variety of
problems.

We develop a formal theory of global search algorithms called GS-theory. When a given
problem is appropriately extended to a gs-theory then the framework of a global search
algorithm is defined for it. Program parts and filters such as backtrack pruning tests, lower
bound pruning tests, and dominance relations can be precisely specified and derived via
inference in the extended problem theory. Each of these filters are common in known global
search algorithms, but are now obtained through human invention.

We illustrate the theory by deriving a well-structured algorithm for enumerating cyclic dif-
ference sets (22, 4, 5]. Cyclic Difference Sets (CDSs) have been studied in the mathematical
literature, but apparently no one has tried to exhaustively enumerate them. They are rela-
tively rare sets and are somewhat analogous to primes in the natural numbers. The problem
can be defined as follows. Given a modulus v, a set size k, and a constant ¢, a (v, k, £)-cyclic
difference set C is a subset of {0..v — 1} that has size k. Furthermore, if we consider “ro-
tating” C by adding an arbitrary constant ¢, where t mod v # 0, to each element yielding
a new set D, then C and D have exactly £ elements in common. For example, the simplest
CDS is the (7,3,1)-cds {0,1,3}. It has the property that for any ¢ € {1..6} that

size({0,1,3}N{i + jmod 6 | j € {0,1,3}}) =1,

for example, for i = 4 we have size({0,1,3} N {4,5,1}}) = 1. These sets have been used for
coding satellite communications, creating masks for X-ray telescopes, and other applications.
Baumert {4] collects all known CDSs whose size is less than 150. These known CDSs were
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found purely by mathematical construction. Below we describe the derivation of a program
to enumerate CDSs. We have used this program to discover a previously unknown CDS: the
(13,4,1)-CDS: {0,1,4,6}.

3.1 Domain Model

We outline here a static domain model for the CDS problem which is presented as a domain
theory. First, we use the notation and semantics of the REFINE langauge which gives us
standard first-order predicate calculus and set-theoretic notations, data types, and operators.
In order to specify the cyclic difference set problem we must then extend this REFINE model
with definitions of new terms and appropriate laws. Some of these are listed next. Unless
otherwise indicated, all free variables are universally quantified.

Theory Cyclic_Difference_Sets

Sorts Nat, set(Nat)

Operations rotate: Nat x Nat x set(Nat) — set(Nat)
overlap_under_rotation : Nat x Nat x set(Nat) x set(Nat) — Nat
self overlap_under_rotation : Nat x Nat x set(Nat) —» Nat

Axioms 1€i<n-1ARC{0.n-1}
=> rotate(i,n,R) = {(a+i)modn|a€ R}

1<i<n-1ARC{0.n—-1} A SC{0.n-1}
=> overlap_under_rotation(i,n,R,S) = size(S N rotate(i,n, R))

1<i<n-1A RC{0.n-1)
= self_overlap_under_rotation(i,n, R)
= overlap-under rotation(i,n, R, R)

self overlap_under_rotation(i,n,{}) = 0
self_overlap.under_rotation(i,n,{0..n —1}) = n

1<i<n-1Aa¢R
=> self_overlap_under_rotation(i,n, R with a)
= (self.overlap_under_rotation(i,n, R)
+overlap_under rotation(i, n, {a}, R)
+overlap_under rotation(i,n, R, {a})

1<i<n-1A RNS = {}
=> self overlap.under_rotation(i,n, RU S)
= (sel f_overlap_under_rotation(i,n, R)
+sel f overlap_under_rotation(i,n, S)
+overlapunder rotation(i,n, S, R)
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+overlap_under.rotation(i,n, R, S)

Notice that this extended theory introduces some new terminology that enables us to write
a concise specification for the cyclic difference sets problem. Also a collection of distributive
laws have been listed. Strictly speaking, these are redundant consequences of the earlier
axioms, but we have found that distributive and montonicity laws provide most of the
lemmas needed during the design and optimzation of programs. Consequently, it has become
standard in our methodology to create a complete set of laws that show how a newly defined
term distributes over the constructors of its input domain.

3.2 Specifications as Theories

We will treat problem specifications as first-order theories. For convenience to the reader we
will also use a more conventional functional programming format for presenting specifications
as a kind of “surface syntax” for the underlying specification theory.

Define basic problem structure Bf to be a structure consisting of a function F, an input
domain D, an output domain R, an input condition I, and an input/output predicate O plus
axioms that constrain the possible denotations of function F. Here we restrict our attention
to axiomatizing functions that find all solutions.

Theory Br

Sorts D,R

Operations I:D — Boolean
O :D x R — Boolean
F:D-R

Axioms VxeDVzeR[I(x) = F(x)={z]|O0(x,2z)}]

The snput condition I(x) constrains the domain of values on which the desired program
F(x) is to work. The output condition O(x,z) describes the conditions under which output
domain value z is a feasile solution with respect to input instance x.

A program specification is a basic problem structure extended with an axiom of the form

Vx € D [I(x) => F(x) = Body(x) ).

A program specification is consistent if the associated extended theory is consistent.

Concrete problem theories will be presented as theory morphisms from B into the derived
operators of the particular problem.

Expressed in a more conventional format, a program specification has the general form:
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function F (x:D): set(R)
where I(x)
returns {z| O(x,z)}
= Body(x)

The expression Body (when present) is code that can be executed to compute F.
Fzample: Cyclic Difference Sets

For example, the cyclic difference sets problem can be specified in the functional format

function CDS(v: Nat,k: Nat,¢: Nat) : set(set(Nat))
where 1 <{<k<v
returns {sub|subC {0..v —1}
A size(sub) =k
AV(i)(iC {l.v—1} => self_overlap_under_rotation(i, v, sub) = £)}.

and then presented as a theory morphism from basic problem structure B to CDS

CDS
Nat x Nat x Nat
Mo, k,8). 1 <€<k<v
set(Nat)
(v, k, £), sub. sub C {0..v — 1}
A size(sub) =k
AV()( 1 C{l.v—-1} => self overlap_under_rotation(i,v,sub) =¢)}.

End of Ezample.

OF¥=UDm
ITIT1

A specification is represented in terms of basic problem structure in order to later extend
it with the structure of an algorithmic thcory and allow inference of programs in various
formats. We are concerned with those extensions that underlie the inference of global search
algorithms.

3.3 Inference

Deductive inference is a pervasive activity in our approach to algorithm design. We will
use a form of deduction, called directed inference, that generalizes theorem-proving and
formula simplification. Given some assumptions A(Z) and a source term (possibly a formula)
S(Z), the goal is to find a term T'(y) that (1) bears a specified relationship to S, e.g. ,
S(¥) => T(§) or S(¥) < T(¥) under the given assumptions; (2) satisfies some syntactic
constraints, typically that its free variables §f are a specified subset of £; and (3) minimizes
some cost function, e.g. , a heuristic measure of computational simplicity. For example, we
might want to reason forward from S(Z) to find a consequence T'(y) where § C Z and

VE[A@@) = (S(2) = T(@). (1)
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In other words, we derive a necessary condition T(Z) on S(£) under assumptions A(Z).

Similarly, given A(Z) and an integer-valued expression e(Z), we might want to find another
expression f(y) that satisfies some syntactic constraints and satisfies some comparison re-
lation, e.g. , <, 2, =, or C, with e. For example, a lower bound f for e over variables y
satisfies:

Vi [A(Z) = e(d) 2 f(§)]- (2)

We require only that the specified direction of the inference be a preorder (i.e., reflexive and
transitive).

In general a directed inference is specified as follows:

Assumptions AT A AL A ... ANA,
Source S(%)
Inference-direction —

-

Target-variables y

The inference process involves applying a sequence of transformations to the source term.
The transformations are restricted to those that preserve the specified inference direction.
A directed inference can be expressed

S=So — 51 — Sz had ...S,.=T

with result

ST

where T is constrained to contain only the target variables. Some typical inference directions
that will appear later include

forward inference
backward inference
simplification

relaxing a set

deriving a lower bound

IVIDHHH

In general we will also perform forward inference from the assumptions in order to obtain a
richer assumption set. That is, if we can infer B from assumptions A,, A3, ..., A, then B
can be added to the assumptions. These derived assumptions often help simplify and speed
up the inference process.

Deriving a necessary (resp. sufficient) condition on a formula is performed via forward (back-
ward) inference and we will sometimes call the result a derived consequent (antecedent).
Analogously, deriving a necessary and sufficient condition on a formula is performed via
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equivalence-preserving transformations and we will sometimes call the result a derived equiv-
alent. In these terms theorem-proving can be viewed as the task of deriving true as an an-
tecedent of a given goal formula (or of deriving false as a consequent of the negation of the
goal). The task of formula simplification can be viewed as the task of deriving an equivalent
of the given goal that minimizes some measure of formula simplicity. Much of the work in
algorithm design can be treated as highly constrained directed inference. A formal system for
deriving antecedents appears in [23]. We have implemented an automatic directed inference

system called RAINBOW II that is invoked by CYPRESS II as a utility.

3.4 Abstract Structure of Global Search Algorithms

In this section we formalize the structure underlying global search algorithms. The formalism
is of value in that (1) it allows us to clarify the nature of global search algorithms and their
correctness, and (Z) it provides a rigorous foundation for designing global search algorithms
for particular problems. The intuitive notion of global search can be treated as the extension
of basic problem structure with an abstract data type for descriptors. The operators on this
type allow for creating an initial space, splitting spaces, extracting solutions, and determin-
ing element membership. Axioms constrain the possible interpretations of the extension.
Formally, a gs_extension to basic problem structure B consists of the following structure:

Sorts R

Operations fo:D — R
Satisfies : R x R — Boolean
Split : D x R x R — Boolean
Extract : R x R — Boolean

Axioms GS1. ¥x € DVz € R[O(x,z) => Satisfies(z, fo(x))]
GS2. Satisfies(z,f) <= 3k € Nat 35 € R [ Split*(x,#,8) A Extract(z,$)]

where R is the domain of meaningful descriptors, f, 8, and t vary over descriptors, fo(x) is
the descriptor of the initial set of candidate solutions, Satisfies(z, f) means that z is in the
set denoted by descriptor  or that z satisfies the constraints that f represents, Split(x, f,§)
means that § is a subspace of # with respect to input x, and Extract(z, f) means that z is
directly extractable from F. Axiom GS1 gives the denotation of the initial descriptor — all
feasible solutions are contained in the initial space. Axiom GS2 gives the denotation of an
arbitrary descriptor # — an output object 2 is in the set denoted by # if and only if z can
be extracted after finitely many applications of Split to #. Here

Split(x,f,t) <= f=t
and for all k € Nat
Split**!(x,#,&) <= 35 € R[Split(x,#,8) A Split*(x,5,t)].
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Basic problem structure B with a gs-extension is called a gs-theory ¢, and it provides the
components necessary for deriving a global search algorithm.

Ezample: Enumerating Subsets

Consider the problem of enumerating subsets of a given finite set S. A space can be described
by a pair (U, V) that denotes the set of all subsets of UUV that extend U. The descriptor for
the initial space is just ({ },S) where {| |} denotes the empty map. Formally, the descriptor
(U, V) denotes the set

{TIUCT A TCVuU}.

We present a concrete gs-theory via a theory morphism (correspondence) between the ab-
stract components (theory signature) and object-level expressions

F +— gssubsetsof._a_finite_set

D »  set(a)

R +—  set(a)

O —» AMT.TCS

R — S, {{UV)|Ucset(a) A Vesetle) AUV CS)
Satisfies — AT, (U,V).UCT A TCVuU

fo = AS. (emptyset,S)

Split +— AS (U, V),(U,V).V#{} A a=arb(V)
AU, VY=(UV —-a) vV (U,V)=(U+a,V —a))
Extract +— AT, (U,V).empty(V) A T=U
End of Ezample.

We will derive one recursive program specifications in gs-theory, others may be found in [27).
For an arbitrary gs-theory Gp we can define an auxiliary function F_gs(x, £) that yields the
set of all feasible solutions z in space f; that is,

F_gs(x,t) = {z | Satisfies(z,#) A O(x,z)}.

Theorem 3.1 Let Gr be a well-founded gs-theory. The following multilinear recursive pro-
gram specification is consistent.

function F(x:D): set(R)
where I(x)
returns {z | O(x,z)}
= F.gs(x,fo(x))

function F.gs(x:D,#:R): set(R)
where I(x)
returns {z | Satisfies(z,#) A O(x,z)}
= {z | Extract(z,f) A O(x,z)}
U reduce(U, { F-gs(x,8) | Split(x, #8)}).
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Proof: The main challenge is to show the consistency of F_gs:

F_gs(x,t) = {z | Satisfies(z,#) A O(x,z)}. (3)

Assuming (3), the first specification is consistent by the following argument:

F_gs(x, fo(x))
{z | Satisfies(z, fo(x)) A O(x,z)} by (3)
{z | O(x,2)} using Axiom GSI.

F(x)

wwu

To establish (3) we will show that
Ax, F. {z | Satisfies(z,#) A O(x,z)}
is the function computed by F_gs by showing that the least fixpoint of the functional
GS(f)= Ax,f. {z | Extract(z,f) A O(x,z)}
U reduce(U, { f(x,8) | Split(x,#,8)}).
In particular, if w denotes the everywhere undefined function, then we must show that
.lirg GS'(w) = Ax, . {z | Satisfies(z,#) A O(x,z)}.
First we show by induction that
GS'(w)= Mx, . if 3t € R[ Spliti(x,#, 1))

then L
else {z| k € {0..5} A Split*(x,#,t) A Extract(z,t) A O(x,z)}.

The case 1 =0 is easy since both sides evaluate to w. Next, assume the above equality for i
and consider GS**!(w).

GS*+!(w) = GS(GS'(w))

= Mx,F. {z | Extract(z,) A O(x,z)}
U reduce(U, { GS*(w)(x, ) | Split(x, f,8)})

= Mx,f. {z | Extract(z,f) A O(x,z)}
U reduce(U, { (if 3t : R[Split'(x,3,t)] then L else {z]...})
| Split(x, #,8)})
applying the induction hypothesis

Ax, £. {z | Extract(z,f) A O(x,z)}
U reduce(U, (if 3t : R[ Split™*'(x,#,t)] then L
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else {{z |k € {0..i} A Split*(x,#,t) A Extract(z,t) A O(x,z)}
[ Split(x,#,4)}))

distributing the set-former over the conditional

= Ax,#. if 3€: R[Split™+!(x,#,{)]
then L
else {z | Extract(z,f) A O(x,z)}
U reduce(U, {{z | k € {0..4} A Split*(x,s,t) A Extract(z,t) A O(x,z)}
| Split(x,,3)})
distributing the set union operations over the conditional

= Ax, £ if 3t: R[Split™*'(x, 1))
then 1
else {z| ke {0.i+1} A Split*¥(x,#,i) A Extract(z,t) A O(x,z)})
simplifying

The final expression above is in the form GS**'(w). Finally, we have

lim GS'(w)= Ax,#.if Vi: Nat 3t : R[ Split‘(x, f, f)]
then 1L
else {z|k:Nat A Split(x,#,t) A Extract(z,t) A O(x,2)}

= Ax,E. {z| k: Nat A Split*(x,#,t) A Extract(z,t) A O(x,3z)}
since GF is well-founded gs-theory

= Ax,t. {z | Satisfies(z,f) A O(x,z)}
by Axiom GS2.

QED

Theorein 3.1 provides & program scheme that can be instantiated to yield a concrete consis-
tent program for a given problem.

Ezample: Enumerating Subsets

Applying Theorem 3.1 to the gs-theory gs_finite_maps we obtain the program specification:

function Subsets(S : set(a)) : set(set(S))
= Subsets gs(S,{},U)

function Subsets_gs(S,U,V) : set(set(S))

where UWV C S
returns {T|UCT A TCVuU)
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= {T | empty(V) A T=U}
U reduce(U, {Subsetsgs(S,U’, V')
[V#{} A a=arb(V)
AU VY=(UV —a) v (U, V)=(U +4,V —a)))

In the last line above a is bound to a single value arb(V).
End of Example.

Many other algorithm specifications can also be derived in abstract gs-theory (see [27]).

3.5 Specializing a Known GS-Theory

Our tactics for designing global search algorithms rely on a directed inference system and a
knowledge base of standard gs-theories for common domains. The steps of the tactic are to
select and adapt a standard gs-theory, then to infer various filters, infer a concrete program,
and perform optimizations on it.

We describe here how to specialize a gs-theory to a given problem specification. Let Gg
be a known gs-theory (i.e., available in the knowledge-base) whose components are denoted
D¢, Rg,Og, Satisfiesg, etc., and let F be a given problem with components Dr, Rr, OF.
The gs-theory G generulizes By if the feasible set of G is a superset of the feasible set of F.

Vx:Drp3dy:DgVz: Rr [RF C Rg A (Op(x,2) = Og(y,z))] (4)

Verifying (4) provides a substitution 8 for the input variables of Gz in terms of the input
variables of F'. The type and number of input variables can differ between G and Bp, as
in the example below. The gs-theory G is obtained by applying substitution @ across the
gs-extension of Gg and adding the result to Br. To see that the axioms GS1 and GS2 hold
for Gr note that we have replaced the input variables of G; with terms which take on a
subset of their previous values.

Ezample: Cyclic Difference Sets.

The gs-theory gs_subsets_of-a_finite_set generalizes the C DS specification. To see this, first
instantiate (4)

Y(v,k, ) € {{v,k, ) |1 <L <k < v}
3S : set(Nat)
VSub : set(Nat)

[SubC {0.v -1} = SubC §]
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The proof is trivial and results in the substitution

6={Sw {0.v-1}}.

This substitution is a critical translation between the problem specified in gs.subsets_of_a_finite_set,
which takes a single set-valued argument S, and CDS, which takes three arguments v, k, £.
After applying these substitutions over the gs-extension of gs_subsets_of-a_finite_set, we ob-

tain the following specialized gs-theory for cyclic difference sets.

CDS
Nat x Nat x Nat
Mo, k). 1<€<k<v
set(Nat)
Av, k, £), sub. Sub C {0..v -1}
A size(Sub) =k
AV()(t C {l.v~1} = selfoverlap.under_rotation(i,v,sub)=¢)}

OXUm
11111

A

R — Mv,k,0).{(U,V)|UE€Eset(a) A Vesetfa) AUV C {0.v-1}}
Satisfies +— ASub, (U,V).U CSub A SubC VWU
fo =~  Auv,k,£). (emptyset, {0..v - 1})
Split  +—  Av,k,80,(U,V),{U, V). V#{} A a=ar)V)

AU VY=(UV -a) v (U, V)=(U+4a,V —~a))
Extract — A v,k 0),ud, (U, V). empty(V) A Sub=U

Theorem 3.1 allows us to assemble a recursive program specification for the feasible space of

CDS:

function CDS(v,k,¢)
where 1 <{<k<v
returns {sub| SubC {0..v —1}}
= CDSgs(v,k,¢,{},{1..n})

function CDS_gs(v,k, L, U, V)
where 1 <{<k<v AVHUC{0.v-1}
returns { sub|U C SubC V U}
= {sub|empty(V) A Sub=U
ASubC {0.v-1)}
A size(Sub) =k
AV(E)( i C {1.v — 1} = self_overlap_under_rotation(i, v, sub) = {)}
U reduce(U, {CDS_gs(v, k,L,U", V") |
V#{} A a=ardV)
AU VY=(U,V ~a) V (U, V)=(U+a,V —a))}).

This is a correct CDS algorithm, but it enumerates all 2" subsets and so it is not very efficient.
Various ways to improve its performance are described below. A refinement decision that
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we will not discuss is the implementation of a = ard(T); any refinement of arb will preserve
correctness although with varying degrees of performance.

End of ezample CDS.

The result of the specialization process is another gs-theory Gr which can be added to
the knowledge base if desired, and thus reused. This approach allows the design system
to be involved in the incremental acquisition of its own knowledge base. Furthermore it
allows concentration of the knowledge base in specialized domains. As a simple example,
a generator of mappings could be specialized to a generator of permutations, which could
serve as a starting point for developing an enumerator for the k-queens or traveling salesman
problems.

3.6 Program Optimization

Theorem 3.1 allows us to infer a consistent but possibly inefficient algorithm from a gs-
theory. While the algorithm will be well-structured, it may allow expensive and unnecessary
computation - a common situation in search algorithms. In the following sections we dis-
cuss several methods for improving the performance of global search algorithms: deriving
feasibility filters, term simplification, finite differencing, data structure design and represen-
tation, and finally design of subalgorithms. Our overall design tactic suggests (but does not
require) applying these transformations in the order presented, since each tends to provide
opportunities for the next.

3.6.1 Filters

In this section and in Section 4.3 we define several common types of filters — predicates that
are used to eliminate spaces from further consideration. In terms of the search tree model,
filters can be used to prune off branches of the search tree that cannot yield solutions or to
focus search on branches that are known to lead to solutions.

The purpose of using filters is to concentrate the search by reducing the number of spaces
that are explored. To be more precise, in the Theorem 3.1 the set of spaces explored for
input x is

{8 k€ Nat A Split*(x,fo(x),8) }.
An absolute filter is a predicate over spaces: ¥ € map(D x R, Boolean). It is exploited, for
example, in the multilinear recursive scheme as follows.

function F(x:D): set(R)
where I(x)
= {z||¥(x,o(x))| A 2z € F_gs(x, Fo(x),2)}

function F.gs(x:D,#:R): set(R)
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where I(x)} A ¢(x,&)
= {z [ Extract(z,f) A O(x,z)}
U reduce(U, { F_gs(x,) | Split(x, #,8) A y(x,8)[})

Since v is evaluated prior to each invocation of F_gs, it becomes an input invariant of F_gs.
When a filter is employed as above the set of spaces explored is

{8 k € Nat A Split*(x,#9(x),8) A ¥(x,8) }.

These program specifications do not include a returns clause because the semantics of y
affects the results.

The stronger the filter the fewer the spaces that are explored by the global search algorithm.
That is, if
h(x,t) = ¥i(x,F)

(i.e., ¥, is stronger than ;) then
{8 | k € Nat A Split*(x,to(x),8) A ¥1(x,8) } C {8 | k € Nat A Split*(x, #o(x),8) A ¥a(x,8) }.

Thus, all else being equal, we are motivated to derive as strong a filter as possible. This
situation is complicated by two facts however. First, the stronger filter may eliminate some
spaces that contain solutions and thus not find all solutions. For example, strongest possible
filter (false) filters out all spaces, so that the search algorithm returns no solutions. Second,
the complexity of computing the filter itself has a strong effect on performance of the global
search algorithm. It is possible that a weaker but cheaper filter will outperform a stronger
but expensive filter.

The relationship between the semantic strength of a filter and the quality of the solution
set is clarified somewhat by the following classification of filters. The question of interest
when seeking feasible solutions is “Does there exist a feasible solution in a given space 7.
Formally this is

3z € R [ Satisfies(z,f) A O(x,y)] (5)

We might call this the ideal filter since a global search algorithm algorithm using it would
explore exactly the set of spaces needed to find all solutions. However, to use this directly
would usually be too expensive, so instead we use various approximations to it. These
approximations can be classified as either

(1) necessary feasibility filters, where
3z € R [ Satisfies(z,f) A O(x,y)] = ¥(x,#);

(ii) sufficient feasibility filters, where

¥(x,f) = 3z € R [ Satisfies(z,#) A O(x,y)];
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(i11) heuristic feasibility filters, which bear other relationships to (5).

Necessary filters only eliminate spaces that do not contain solutions, but they may also
allow spaces that do not contain solutions to be explored. So they guarantee finding all
solutions but may allow unnecessary work. Sufficient filters eliminate all spaces that do
not contain solutions, but may filter out some spaces that do contain solutions. Thus they
do no unnecessary work, but only return a subset of solutions. Heuristic filters have the
disadvantages of both — they may eiiminate spaces containing solutions and allow spaces
that do not contain solutions to be explored. However, a fast heuristic approximation to the
ideal filter may have the best performance in practice.

If a filter ¥ is derived as an approximation to the ideal filter, then it depends on both the
particular problem being solved (via the feasibility conditions) and the general notions of
global search (via the abstract data type of spaces). The inference of ¢ is thus crucial to
the construction of an effective global search algorithm. From another point of view the
derivation and use of feasibility filters can be viewed as the incorporation of problem-specific
information into the more general-purpose generator supplied by the gs-theory.

For several reasons we will concentrate mainly on necessary filters in this section. First, they
are almost always worth deriving since they improve performance without affecting the set
of solutions. Second, algorithms for optimization problems (see Section 4) are based on the
ability to enumerate all feasible solutions since any one of them may be optimal. In the
remainder of this subsection we elaborate on the three kinds of filters.

Necesssary feasibility filters, which will be written @, are defined by the condition

vx € D Vi € RVz € R [ Satisfies(z,i) A O(x,z) = &(x, ). (6)

® can be derived via the following schematic directed inference specification:

Assumptions xeEDAFERAZER
Source Satisfies(z,f) A O(x,2z)
Inference-direction =

Target-variables {x, }

The following propositions simply state that necessary feasibility filters allow the global
search schemes to compute all solutions.

Proposition 3.1 Let Gp be a well-founded gs-theory. If ® is a necessary feasidility filter
then the following program specifications are consistent.

function F(x:D): set(R)
where I(x)
returns {z | O(x,z)}
= {z | ®(x,Fo(x)) A 2z € F_gs(x,fo(x),2)}
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function F_gs(x:D,#:R): set(R)
where I(x) A &(x,#)
returns {z | Satisfies(z,#) A O(x,z)}
= {z | Extract(z,#) A O(x,z)}
U reduce(U, { F_gs(x,8) | Split(x,#,8) A ®(x,8)}).

Ezample: Cyclic Difference Sets.
We can obtain a feasibility filter for CDS by deriving a consequent over the variables
{v,k,¢,S,T, M} according to the inference specification

Assumptions 1<t<k<v
AUWV C {0..v—1}
Source UCSub A SubC VWU

ASubC {0..v—1} A size(Sub)=+k

AV(E)(1 € {l.v -1} = selfoverlap.under rotation(i,v, sub) = £)}
Inference-direction —
Target-variables {v,k,&,U,V}.

Two consequents are easily derived:

size(U) < k A k < size(U)) + size(V).
From U C Sub we have U ¢ Q = Sub for some set Q. Then we proceed as follows.

k = size(sub)
=size(U ¥ Q)
=stze(U) + size(Q)

> size(U)

Thus we obtain size(U) < k as a consequent. Analogously, we infer
V(#)(i C {1.v— 1} = selfoverlap.under_rotation(i,v,U) < ¢)

as a consequent. Using similar reasoning from the source term Sub C V¢ U we obtain the
consequents k < size(U) + size(V) and

V(#)(i € {l.v— 1} = €< self overlap_under_rotation(i,v,U W V)).
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function CDS(v,k,¢)
where 1 <{<k<v
returns {sub | SubC {0..v —1}}
= {sub|size({}) < k < size({}) + size({0..v - 1})
AV(E)( i C {l.v—1} => self_overlap.under_rotation(s,v,{}) < ¢
A € < self —overlap_under_rotation(i,v, { } ¥ {0..v — 1}))
A CDS_gs(v,k,£,{},{0..v-1})}

function CDS_gs(v,k,¢,U,V)
where 1<¢<k<v A VHUC{0.v-1}
A size(U) < k < size(U) + size(V)
AV(E)( i C {l.v =1} => self_overlap_under_rotation(i,v,U) < ¢
A € < self _overlap_under_rotation(i,v,U & V))
returns { sub|U C subC V U}
= {sub|empty(V) A sub=U
AsubC {0.v—1}
A size(sub) =k
AV()(t C {l.v — 1} = self -overlap_under_rotation(i, v, sub) =€)}
U reduce(U, {CDS_gs(v,k,L,U", V") |
V#{} A a=ardV)
AU, VY=(UV -a) vV (U, V)=(U+a,V -a))
size(U') < k < size(U') + size(V')
AV()(:1 C {l.v—1} = self_overlap_under_rotation(i,v,U’') < ¢
A € < self _overlap_under_rotation(i,v,U’ & V’))}).

Figure 6: Cyclic Difference Set Algonthm

These four consequents comprise an excellent feasibility filter. In words, they state that the
partial set being incrementally constructed (U) must have at most k elements, but there
must be at least k elements between U and the pool of remaining elements V. Also, the
partial solution U must have a self-overlap of at most £ and the combined set U ¥ V must

have a self-overlap of at most ¢.

Incorporating the derived filter according to Proposition 3.1 we obtain the consistent program

specification in Figure 6.
End of example.

The filter & will often dramatically reduce the amount of work needed to enumerate the

feasible space.
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One feature of necessary filters is that one, true, is immediately available; stronger filters
are obtained with more investment of computational resource at design-time.

3.6.2 Simplification and Finite Differencing

Various simplifications that exploit context can be identified in the abstract form of the pro-
gram specifications in Proposition 3.1. The most obvious possibility is to simplify predicates
with respect to the input conditions. For example, the predicate ®(x,fo(x)) can usually
be simplified with respect to the input assumption I(x). A complementary simplification is
based on the fact

P = (Q & ¢q)
then P A Qiff P A q.

That is, if we can simplify ‘Q’ to ‘q’ under the assumption of ‘P’, then we can replace the
program expression ‘P A @’ with the simpler, equivalent expression ‘P A ¢’.

For example

1. The expressions Extract(x,#) and O(x,z) can often be simplified with respect to
assumption I(x) A &(x,f)

2. The expression ®(x,8) can often be simplified with respect to assumptions
I(x) A Split(x,#,8) A ®(x,#).
To perform one of these simplifications we set up a directed inference specification. Since

®(x,f) plays such an important role in global search algorithms, we give a name to its
simplified form: ¢(x, ). It satisfies

Vx€D Vi, 3 € R [®(x,#) A Split(x,F,5) => (B(x,8) <> ¢(x,8))]. (7)

A directed inference specification to derive ¢ is

Assumptions xeD AfBER

A &(x,t) A Split(x,#,8)
Source ®(x, 8)
Inference-direction <=
Target-variables {x,8}

Another powerful optimization techinque is called finite differencing. There are often compu-
tationally expensive expressions remaining in the derived program that can be transformed
via finite differencing techniques [18] into less expensive incremental computations. In par-
ticular, subexpressions of the filter ® can often be incrementally maintained rather than
computed each time. For examples of these techniques see [27).
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3.8.3 Control strategy

The multilinear recursion of Theorem 3.1 defines a potentially infinite tree of goals (each
corresponding to a space), so the control strategy must be fair — it must allow that each
node is processed after some finite time. To ensure fairness the tactic should in general
analyze the gs-theory for the depth (number of nonempty Split steps can be performed) and
breadth (maximum number of subspaces that a space directly splits into). If it has finite
depth, then a simple depth-first control suffices. If it has potentially infinite depth then in
general a kind of wavefront control strategy suffices. The gs-theories listed in the Appendix
all have finite depth and breadth, so program termination (and morely generally fairness) is
guaranteed for the usual control strategies — depth-first, breadth-first, and heuristic search
(best-first). Pearl [19] is a rich source of information on search control heuristics and their
effect on performance.

3.6.4 Data structure design, subalgorithm design, compilation

High-level expressions in the algorithm can be treated in several ways. They may have
sufficient algorithmic content that they can be directly compiled in to efficient code. A
collection of transformation rules along the lines of those explored in the CHI project [25]
could be used to perform this “compilation” process. Rules would refine the high-level control
and data structures into efficiently executable lower-level constructs, perhaps motivated by
performance considerations. Another possibility is to mitigate an expensive computation by
introducing data structure - finite differencing is a special case. A third possibility is to
subject an expensive expression to algorithm design - that is, encapsulate it and apply a
design tactic to it. For example, the constraints that define extractible feasible solutions and
the constraints that define the splitting step can be abstracted as specifications:

function F_eztract(x:D,#:R): set(R)
where I(x) A ®(x,f)
returns {z | Extract(z,f) A O(x,z)}

function F_split(x:D,#:R): set(R)
where I(x) A ®(x,f)
returns { 8 | Split(x,#,8) A ¢(x,8)}.

3.7 Remarks on the Global Search Design Tactic

We have presented an axiomatic theory of global search algorithms and a formal method
for designing concrete consistent programs from problem specifications. Qur main design
tactic works by specializing an existing gs-theory to the given problem. It presupposes
a knowledge-base of standard gs-theories for the data types of the specification language
and application domains. This knowledge base is organized as a hierarchy according to
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specialization relationships. In researching for this section, we derived or analyzed dozens of
global search algorithms and almost all were specializations of the gs-theories that are listed
in the Appendix. We have also indicated how the abstract theory could be used to directly
construct a gs-theory for a given problem, although this process is less well understood and
more difficult than specialization of an existing gs-theory.

‘The design tactics are intended to provide a highly automated tool for transforming concise
problem specifications into efficient programs. The decision to design an algorithm of a
certain abstract form, such as global search or divide-and-conquer, provides much structure
and motivation to the design process. The creation of a gs-theory for a given problem provides
the rough framework for an algorithm. A more complicated but efficient algorithm is then
obtained by deriving filters, performing simplifications, finite differencing, data structure
design, etc. Tactics serve to raise the level of language in which programmers can write and
be assured of obtaining at least an executable prototype, if not efficiently executable code.

Global search theory and design tactics can account for a broad range of known algorithms
(see Appendix). Their range of applicability is an example of an important form of reusabil-
ity in software — formal knowledge of how to generate algorithms from specifications. In
addition to algorithm design there are several other possible applications of global search
concepts, such as data structure design, database query compilation and optimization, and
the implementation of set-formers and other enumeration constructs in very-high-level lan-
guages.

4 An Example Evolutionary Design Step

This section presents a simple elaboration step in the context of evolving a specification for
a hospital patient monitoring system. This work was performed by Liam Peyton, currently
a Ph.D. candidate in the Computer Science Department at Stanford University.

We start with a consistent specification of a monitoring system, in which a monitor is assigned
to a patient and a nurse station. The monitor tracks the value associated with a patient and
if the value is unsafe, the monitor notifies the nurse station. While operational, the system is
not sophisticated enough and certain elaborations are required. There may be more than one
value associated with a patient which requires monitoring. Values are not intrinscially part
of the patient, rather they are readings off devices which measure the values. The devices
may be suspect to breakdown etc. We will illustrate our approach with one simple redesign
step, namely, that we wish our model to reflect that the monitor is monitoring values that
are measured by a device associated with the patient. We will make a change to our initial
model and then propagate the change so as to reestablish a consistent deisgn structure. The
steps described below refer to the figures in the Appendix.

There are a number of different ways of conceptualizing this type of change. One way to
think of it is that concept device is introduced by splicing it in to the connections between
the patient and the monitor [9] as a step towards introducing new functionality (being able
to handle device breakdown). Another is that one is reorganizing the location of information
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within the system by moving the value from the patient to the device. The third approach
is to think of the Patient in the old system as being a merging of two concepts (the patient,
and mechanisms which measure values) a Patient/Device object. In the new system, the
old concept will have been partitioned into two concepts Patient and Device. This will
both reorganize the location of information in the system and facilitate the introduction of
new functionality. We feel that this last approach is the best in that it subsumes the first
two, however our redesign could have been centered around the first two appraches as well
(steps 2 and 4 below). Evolution is an exploratory process in which the next overall state of
the design structure emerges from smaller interacting concerns (adding a device, relocating
information).

Step 1. ExtendType

This transformation simply creates Device as a sibling type similar to Patient. This change,
though, by itself has no effect on the system, as none of the processing is altered. However,
the semantics behind the notion of partitioning a type, can be used to drive the redesign.
The information (operations) associated with Patient are being partitioned. This can be
used to initiate a dialogue to elicit the information that would be necessary to automate
the rest of the edit session. What objects that were in the Patient/Device class are now
in the Patient class? In the Device class? Which should be split into two objects of type
Patient and Device? In this case, every Patient will have a Device associated with it, so it
turns out that all objects will be split into two objects of type Patient and Device. What
Operations associated with Patient/Device will be applicable to both Patient and Device,
only Patient, only Device? In this case, the operations associated with the Patient/Device
class will be assigned to either Patient or Device not both. This is because of the fact that
the Patient/Device class was partitioned.

Step 2. DecomposeOperation

This edit operation splices Device into the data flow between Patient and Monitor. In gen-
eral after a transformation of this type, one has to decide whether applications of Mpatient,
should now be Mdevice or Dpatient(Mdevice). Some of the objects that Mpatient returned
might now need to be of type Device. However, if the information was provided initially in
Step 1, then step three can proceed automatically.

Step 3. DecomposeOperationApplication or ChangeOperationApplication

This transformation changes references to Mpatient(x) to either Mdevice(z) or
Dpatient(Mdevice(z)).

Step 4. MoveOperation

This step could conceivably have been initiated as part of Step 1, or it could have been the
starting point in an exploration which triggered the preceding steps. A preconditon of the
MoveOperation would be that the type Device has been created. As well, MoveOperation
will create side effects that upset the internal consistency of the specification (i.e. all the
operations which call Pvalue are calling it on objects of type Patient). Resolving those side
effect would involve incorporating device into the data flow between Monitor and Patient.
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Oune could think of the MoveOperation as a mapping that takes some of the objects from
the old Patient/Device into objects in Device. Namely the ones whose Pvalue property is
used. Knowing that the Pvalue property is being moved is useful in Step 1 for determining
which objects should be of type Patient and which should be of type Device. It is also
useful for similar reasons in Step 2.

It is generally the case in software development, that all the information needed for design is
NOT available at the start of design. When it is, design should proceed automatically, when
it is not, it should be possible to incorporate the new information as it is made available.
Our approach is to apply transformations that are only locally consistent and complete,
but may which be globally incomplete and inconsistent. However, a dependency network is
maintained which keeps track of inconsistencies which need to be resolved and dependencies
between edit operations. So for example, in applying Steps 1 and 2 one is not forced to
immediately change the calls to Mpatient or determine which objects and operations should
belong to Patient and which to Device. When an edit operation is applied the dependency
network is updated. If any constraints are violated the dependency is added to an agenda
of redesign constraints which need to be satisfied sometime before the end of the session.

Step 5. ChangeTypeOFObject

This will occur either from information gathered in step 1, or to fix a side effect of step 4.
If it was fixing a side effect, it was because the dependency Definition(Pvalue,Pvalue(p))
needed to be fixed because the constraint that p be an object of type Device was violated.
This could either be resolved by mapping the patient p into the new object of type Device
which has the information Pvalue that used to be associated with p (Pvalue(Dpatient(p))
or one could simply make the decision from Step 1 that p now be an object of type Device.
Note, that making the second decision automatically makes the decision that the operation
Psafe should be moved from Patient to Device as well.

Step 6. RemoveOperationApplication

As a result of Step 5, there is another side effect. Again a definition dependency has been
violated Definition(Psafe, Psafe(dpatient(Mdevice(m)))). Note that in this case, one
is undoing a decision made in Step 3. As new information becomes available it may be
necessary to undo decisions. Reasoning with dependencies and constraints, using flexible
transformations facilitate this process.

Controlling Design

The main difficulty in this approach is the extent to which the change propagation process
can be controlled and focused. A semantic abstraction like EFztendType can be a useful
mechanism. A tractable and decomposable characterization of the pre- and post-conditions
could be useful for reasoning about transforms in a manner similar to Perrys approach to
functional interface specification. Decomposable domain specific constraints and redesign
goals, in a specific application domain could also be used to structure the design in a com-
plementary fashion.
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The process of design seeks to synthesize an artifact given goals and constraints which
describe such things as the form and function of the artifact. A piece of software is an
interconnected collection of components, with both semantic and user constraints on the
interconnections. The result of design must be a consistent state, but it may be necessary
to have inconsistent states along the way.

First, steps along the way may interact, thus restricting oneself to coomplete and consistent
transformations may eliminate valid possible evolution steps. Conversely, disallowing incon-
sistent states may restrict the allowable constraints. Design is an exploratory process which
results not just in a new product but a new understanding of the domain and the tradeoffs
between constraints. By allowing transformations with unresolved constraint violations, one
makes explicit the relationship between the various redesign steps. One sees which steps were
directly satisfying goals, and which were invoked to resolve constraint violations induced by
those steps. This should make it possible to build a history hierarchy which wouldaid both in
building high level redesign tactics and in facilitating incremental replay. In the case, where
a specification is actually overconstrained, it should be possible to show which constraints
were mutually incompatible.

Our approach is to maintain a network of dependencies associated with a specification. When
a transformation (or even an edited change) occurs, the network is updated and constraints
checked. Constraints violated are flagged. We maintain an agenda of goals and add goals to
treat violated constraints as they arise.

5 Concluding Remarks

There has been a kind of symbiosis between the activities reported here: the development of
a general model of software design and evolution on one hand, and on the other hand, the
development of a design method for global search algorithms and the study of the evolution
of the patient monitoring system.

The general model has helped to clarify the components of the global search design method
and their interrelationships. It also poses challenging questions for the global search design
method (and indeed for all design methods), such as how adequate it is with respect to
evolutionary activities. That is, how do incremental changes to the underlying domain theory
or to the specification propagate through the design tactic? This kind of cross-fertilization
provides welcome opportunities for enriching and extending our algorithm design methods.

In turn, the design tactic for global search algorithms helps to validate the general model
by providing a rich example of a formal software design process. The tactic (as described in
Section 3) provides another level of elaboration to the general concept of derivation in the
model. That is, algorithm design, simplification, finite differencing (to begin to introduce
data structures), and so on.

The patient monitoring system example has suggested elaborations to our model of evolution
and in turn has benefited from suggestions as to the kinds of changes that make sense from
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the perspective of the model.
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Appendix
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Iransformations

ExtendType
/Hospitalp{ject ; /Hosp;lome\ct \
Patilnt Patient Device
DecomposeOperation

Mpatient Dpatient Mdevice '
Patient «———Monitor-—-? Patient «——— Device «——— Monitoi

Patient ———-’MQnitor% Patient —-O Device —— Monitor
Pmonitor Pdevice Dmonitor

DecomposeOperationApplication
Nnotify(Mstation(m), Mpatient(m))

Nnotify(Mstation(m), Dpatient(Mdevice(m)))

Psafe(Mpatient(m)) —9 Psafe(Dpatient(Mdevice(m)))

MoveOperation

Pvalue ~ Dvalue
Patient ———— Real Device ——— Real

ChangeTypeQfObject
Psafe(p:Patient) Psafe(d:Device)

RemoyveOperationApplication

Psafe(Dpatient(Mdevice(m))) —-9 Psafe(Mdevice(m))
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Dependency Networks

Device Patient

Pvalue Psafe(p:patient)
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